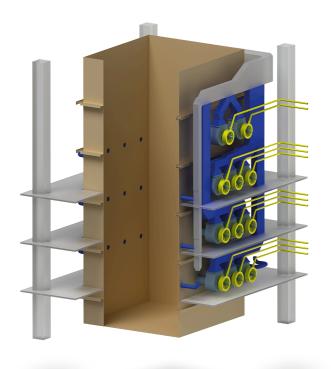
(Trat

WHEN MAKING A CHANGE, MAKE IT FOR THE BETTER

- Operators of industrial power plants are themselves constantly under pressure to improve efficiency, reduce operational costs and meet changing emission
- requirements. The growing awareness for environmental
- issues and the need to conserve resources are our incentive for innovation.
- Upgrades to existing furnaces and combustion systems have become unavoidable as a result of ever more stringent legislation. The real challenge however, is to ensure that the new applications comply to the rules without reducing plant efficiency and increasing operational costs.

EXPERT KNOWLEDGE AND INNOVATIVE THINKING – THE KEY TO EFFECTIVE SOLUTIONS

Steinmüller Engineering has the knowledge and experience to convert a fuel's stored chemical energy into usable energy. We have successfully realized a huge number of projects worldwide, covering various industrial sectors, types and sizes of plant. Special fuels and fuel combinations in particular are our area of expertise, including the development of customized solutions for process residues, biomass, biogas and fossil fuels. Our clients rely on us to find the best strategy for challenging retrofit projects, in accordance with their specific plant designs.


TURN OUR EXPERIENCE INTO YOUR ADVANTAGE!

CONTACT

Krzysztof Zajac Department Manager Combustion Technologies


krzysztof.zajac@steinmueller.com +49 (0) 2261 / 78950 - 304

LIQUIDS AND GAS FIRING SYSTEMS

OIL AND GAS VORTEX BURNER

HIGH COMBUSTION EFFICIENCY

LOW EMISSIONS

SCOPE OF SUPPLY

Consultancy

FLEXIBLE OPERATION

Process engineering

CFD-Simulations of boiler

furnace and combustion

• Supply of gas- and oil

components

Commissioning

Optimization

burners including all related

APPLICATION

Power Plants and Industrial Boilers

NOx reduction, extension of fuel type, efficiency increase Benefits

- Minimization of organic residues
- High burnout of fuel
- Reliable solutions based on decades of experience
- Совместное сжигание

TECHNICAL DATA

Capacity Gas: Capacity Oil: 5 – 100 MWth 0.6 - 100 MWth (0.45 – 9 t/h)

FUEL TYPE

Reffineries:

- Refinery gas
- Visbreaker residues
- H₂

Steel plants: Power plants:

- Natural gas furnace gas
 - Light fuel oil
- Coke oven gas Heavy fuel oil
- 6verter gas
 - Bio fuel

REFERENCE LIST EXCERPT

REFERENCE

Supply and implementation of a new oil and gas firing steam generator plus retrofit of a catalytic DeNO_x sys Heavy Fuel Oil and Low-Pressure-Gas, Shell Wesselin

Study for capacity increase of firing system, Coke-Ove MWel, CHP Hamborn 5, Germany

Basic Engineering and supply for gas connection instal retrofit for additional natural gas firing system, Tiefstad Germany

Engineering and supply of oil atomiser lances and ator Mainova, Germany

Engineering and supply for retrofit of burner level oil-to-ga 2 x 750 t/h, Refinery Residues and Heavy Fuel Oil, PCK Sch Germany

Supply of oil control valve stations, Heavy Fuel Oil an Pressure-Gas, Shell Wesseling, Germany

Supply, erection and commissioning of 12 optimised inserts, CHP West Unit 2, Germany

Feasibility study for gas conversion, 300 MWel, Bitum Tiefstack PS, Germany

Oil atomizer lances for an ignition system for the hea 2 x 200 MWel, Bituminous Coal, Tiefstack PS, German

Study for capacity increase, coke gas firing system, 2 Huckingen PS, Germany

Engineering and supply of optimised oil lances, 340 M Knepper PS, Germany

Supervision of revamping at refinery steam generator extension and environmental upgrading, Germany

Engineering for retrofit of a SCR-DeNO_x plant, 200 t/l Oil and Low-Pressure-Gas, Shell Rheinland Refinery,

Review of firing concept for BAO Steel, 1170 t/h, Blass

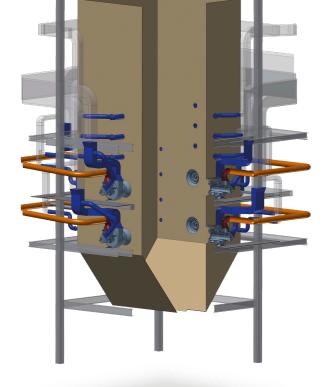
LEGEND

PS Power Station PF Pulverized Fuel CHP Combined Heat & Power Plant

SCR Selective Catalytic Reduction STP Standard Temperature and Pressure HRSG Heat Recovery Steam Generator

4

- system Design of furnace
- Design of burner
- Vacuum residues
- HSC-R


Blast

	CLIENT	
ng system at stem, 200 t/h, ing, Germany	Shell Deutschland Oil GmbH, Wesseling, Germany	
ven Gas, 240	RWE Service GmbH, Germany	
allation, ack PS,	Vattenfall Europe Hamburg AG, Germany	
omiser sprayer,	MAINOVA, Frankfurt, Germany	
asfiring, chwedt,	PCK Raffinerie GmbH, Schwedt, Germany	
nd Low-	Shell Deutschland Oil GmbH, Wesseling, Germany	
oil burner	MAINOVA, Frankfurt, Germany	
minous Coal,	VPC GmbH, Vetschau, Germany	
at power plant ny	Vattenfall Europe Hamburg AG, Germany	
2 x 307 MWel,	RWE AG, Essen, Germany	
MWel,	E.ON Engineering GmbH, Gelsenkirchen, Germany	
ors, life	MIRO, Karlsruhe, Germany	
[′] h, Heavy Fuel Germany	Shell Deutschland Oil GmbH, Wesseling, Germany	
st Furnace Gas	Babcock Hitachi Europe GmbH, Oberhausen, Germany	

FGD Flue Gas Desulphurization Circulating Fluidized Bed CFB ESP Electrostatic Precipitator

BITUMINOUS COAL AND SUB-BITUMINOUS COAL COMBUSTION SYSTEMS

APPLICATION

Power Plants and Industrial Boilers

NO_x reduction, extension of fuel range, efficiency increase

Benefits

- Optimized engineering based on CFD-simulation calculations without expensive trials
- High availability and efficiency
- Increase in operational flexibility
- Reliable solution based on decades of experience

* ® Registered Trademark **S**taged **M**ixing Burner

SM V®* **COAL BURNER**

- EFFICIENCY INCREASE
- FLEXIBLE OPERATION

SCOPE OF SUPPLY

- Consultancy
- Design of burners
- Process engineering
- Design of furnace
- CFD-Simulations of boiler furnace and combustion system
- Supply and installation of firing system components including burners, OFA, etc.
- Adaptation of I & C
- Commissioning
- Optimization

REFERENCE LIST EXCERPT

REFERENCE

Modification and capacity increase of LowNO_X firing s Bituminous Coal, Altbach PS, Germany

Modernization of firing system and extension of coal installation of LowNO_X burners, 500 MWel, Bituminou Herne PS Unit 4, Germany

Investigation and recovery scope development suppo boiler damage, 600 MWel, Bituminous Coal, Duvha PS Africa

Modification of the firing system and installation of Lo burner, 550 MWel, Bituminous Coal, Rheinhafen-Dam (RDK) PS Unit 7, Germany

Concept design study for LowNO_X burner technology, 200 - 730 MWel, Bituminous Coal, ESKOM'S fleet, Sou

Engineering support for manufacturing, installation a sioning of PF burners, 200 MWel, Bituminous Coal, Ca South Africa

Modification of the firing system and installation of Lo burner, 700 MWel, Bituminous Coal, Mehrum PS, Ger

Boiler design review and study for future change in c x 600 MWel. Bituminous Coal. Tutuka PS. South Africa

Design study on coal range extension in supercritical boilers, 5 x 830 MWel, Bituminous Coal, Mundra PS,

Boiler concept study for coal range extension, 465 M Bituminous Coal, CHP Altbach I, Germany

Concept study for coal range extension at 6 x 600 MW Bituminous Coal, Duvha PS, South Africa

Boiler concept study for capacity increase and coal ra sion, 330 MWel, Bituminous Coal, CHP II Altbach PS,

Conceptual design for adaptation of firing equipment sion of acceptable coal specification, 2 x 100 MWel, B Coal, Tiefstack PS, Germany

LEGEND

PS Power Station PF Pulverized Fuel CHP Combined Heat & Power Plant

SCR Selective Catalyti STP Standard Temperat HRSG Heat Recovery Ste

TECHNICAL DATA Burner Type:

SM V[®] * Coal Burner

Burner Capacity: 15 MWth - 100 MWth

Emissions:

CO < 100 mg/m³ (STP) $NO_{x} < 280 \text{ mg/m}^{3} (STP)$

FUEL TYPE

Bituminous Coal Water: 5 - 38 % ar Ash: 10 - 40 % ar

LCV: 12 - 32 MJ/kg

VM daf: 15 - 45 %

	CLIENT	
system,	EnBW Kraftwerke AG, Karlsruhe, Germany	
range,	STEAG GmbH, Essen,	
us Coal,	Germany	
ort after	Eskom Enterprises,	
'S, South	Johannesburg, South Africa	
LowNOχ	EnBW Kraftwerke AG,	
npfkraftwerk	Karlsruhe, Germany	
y,	Eskom Enterprises,	
outh Africa	Johannesburg, South Africa	
and commis-	Eskom Enterprises,	
Camden PS,	Johannesburg, South Africa	
∟owNOχ	Balcke-Dürr GmbH, Ratingen,	
rmany	Germany, for E.ON Power	
coal quality, 6	Eskom Enterprises,	
ca	Johannesburg, South Africa	
al utility	Coastal Gujarat Power Gener-	
India	ation, Mumbai, India	
1Wel,	EnBW Kraftwerke AG, Karlsruhe, Germany	
Wel,	Eskom Enterprises, Johannesburg, South Africa	
range exten-	EnBW Kraftwerke AG,	
Germany	Karlsruhe, Germany	
t to an exten-	Vattenfall Europe Hamburg	
Bituminous	AG, Germany	

ic Reduction		
ture and Pressure		
eam Generator		

FGD Flue Gas Desulphurization CFB Circulating Fluidized Bed ESP Electrostatic Precipitator

• WIDE FUEL RANGE

APPLICATION

Power Plants and Industrial Boilers

Circulating fluidized bed boiler with direct desulfurization

Benefits

- Tailor made design to meet customer specific requests and space limitations
- Sub- and super-critical boiler design with and without reheater
- Advanced nozzle cap design for optimized fluidization
- Refractory protection for critical zones in furnace
- Cyclone configuration for optimal arrangement of plant components

• Convective pass with low erosion design

- Natural circulation
- Once through

BOILER TYPE

FUEL TYPE

- Lignite
- Bituminous coal
- Biomass
- Waste fuels
- Pre-dried lignite
- Co-firing of various fuel types

Consultancy

SCOPE OF SUPPLY

- Sophisticated calculation tools for flow and heat transfer
- Engineering from concept to detail
- Supply of core components
- Site supervision, commissioning
- Optimization

REFERENCE LIST EXCERPT

REFERENCE

Layout and basic engineering for heat and power CFI generator, 90 t/h, Lignite, Tabor PS, Czech Republic

Basic design review CFB boiler, 330 MWel, Lignite, St Bosnia & Herzegovina

Basic design engineering for a process steam CFBC Bituminous Coal, new-built plant, Vietnam

Basic and partial detail design for 2 x 270 MWel CFB0 Becl PS, India

Engineering for CFB Boiler, Low Rank Coal, 2 x 80 t/l

Study for CFB operation boiler 6, comparison of oper with initial design parameters, Pre-Dried Lignite, 248 Merkenich PS, Germany

Know-how transfer and training in the design of CFBC Eskom Enterprises, South Africa

Consultancy and supervision services – Owner's engi construction of the 330 MWel lignite-fired thermal por Stanari, Bosnia & Herzegovina

Know-how transfer and technical training for circulat bed boilers (CFB), Indonesia

Know-how transfer – Engineering for circulating fluid (CFB) boiler technology

Pressure part layout and design for CFB steam gener 250 MWel, Lignite, Neyveli PS, India

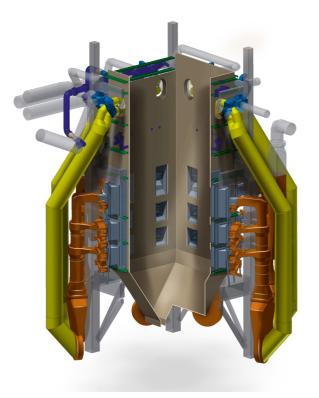
CFBC Market study

Engineering for standardisation of CFB design, Bioma Tokyo, Japan

LEGEND

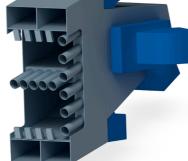
PS Power StationPF Pulverized FuelCHP Combined Heat & Power Plant

SCRSelective CatalytSTPStandard TemperatHRSGHeat Recovery Stat


	CLIENT	
B steam	CKD Praha DIZ a.s., Praha, Czech Republic	
itanari PS,	EFT Group, Belgrade, Serbia	
boiler, 35 t/h,	Martech Boiler Company, Ho Chi Minh City, Vietnam	
3C boilers,	AE&E Lentjes GmbH, Ratingen, Germany	
'h, Indonesia	PT. ZUG Industrie Indonesia, Jakarta, Indonesia	
ration values 3 MWth,	RheinEnergie AG, Cologne, Germany	
BC boilers,	Eskom Enterprises, Johannesburg, South Africa	
gineer for the ower plant	EFT – Rudnik i Thermoelektra- na Stanari d.o.o., Belgrade, Serbia	
ting fluidized	PT. ZUG Industrie Indonesia, Jakarta, Indonesia	
dized bed	PJSC EMAlliance, Taganrog, Russian Federation	
erators, 2 x	AE&E Lentjes GmbH, Ratingen, Germany	
	Babcock-Hitachi Europe, Oberhausen, Germany	
ass, IHI,	IHI Corporation, Tokyo, Japan	

ic Reduction		
ture and Pressure		
eam Generator		

FGD	
CFB	
ESP	


Flue Gas Desulphurization
Circulating Fluidized Bed
Electrostatic Precipitator

LIGNITE COMBUSTION SYSTEMS

RSM® *-LIGNITE BURNER

LOW NOx EMISSION EFFICIENCY INCREASE

APPLICATION

Power Plants and Industrial Boilers

NO_X reduction, extension of fuel range, efficiency increase

Benefits

- Optimized engineering based on CFD-simulation calculations without expensive trials
- High availability and efficiency
- Increase in operational flexibility
- Reliable solution based on decades of experience

SCOPE OF SUPPLY

- Plant in Service Phase:
- Maintenance and repairs
- Upgrades

TECHNICAL DATA

- Management support
- Appropriate supply of spare parts
- Sustainable planning and control of outage phases

FUEL TYPE

Lignite Water: 25 - 70 % ar Ash: 0 – 50 % ar VM daf: 30 – 70 % LCV: 3,5 - 22 MJ/kg

Consultancy

- Design of burners

- CFD-Simulations of boiler furnace and combustion system
- Supply and installation of firing system components including burners, OFA, etc.
- Adaptation of I & C
- Commissioning
- Optimization

REFERENCE LIST EXCERPT

REFERENCE

Engineering and supply of a LowNO_x firing system, 35 Lignite, Kostolac PS B1, PE Industry, Serbia

Lignite firing system modification, 4 x 227 MWel, Lign East 3 PS Unit 1 – 4, Maritza, Bulgaria

Engineering for firing system retrofit, 2 x 600 MWel, L Niederaussem PS Unit G and H, Germany

Basic engineering for LowNO_x firing system modification MWel, Lignite, Jänschwalde PS, Germany

Wall-air system detail design, 11 x 250 MWel, Lignite, Jänschwalde PS, Germany

Process and basic design for proposal of 500 MWel p Lignite, Turow PS, Poland

Concept study and engineering for LowNO_x burner me x 640 MWel, Lignite, Neurath PS Unit D and E, Germa

Feasibility study of potential modifications for NO_v red primary measures, 345 MWel, Lignite, Sostanj PS Uni

Basic & detail engineering including commissioning f reduction, 2 x 600 MWel, Lignite, Weisweiler PS, Gerr

Engineering for modification PF-ducts, 2 x 640 MWel, Neurath PS unit F+G, Germany

Study for NO_x reduction, 2 x 500 MWel, Lignite, Boxbe Germany

Engineering support for boiler protection concept, 2 Lignite, Schkopau PS, Germany

Engineering for optimization combustion system, 625 Lignite, new built power plant, Laos

Basic design study for a super critical one through PO MWel, Raw Lignite, Power Plant in Indonesia

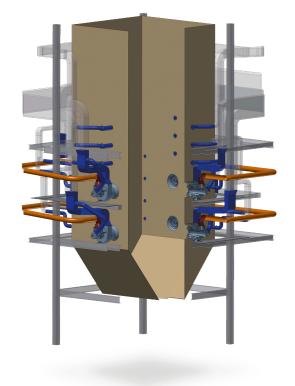
LEGEND

PS Power Station PF Pulverized Fuel CHP Combined Heat & Power Plant

SCR Selective Catalyti STP Standard Temperat HRSG Heat Recovery Ste

* ® Registered Trademark Staged Mixing Burner

 Process engineering Design of furnace


CLIENT	
PE Electric Power Industry, Belgrade, Serbia	
ContourGlobal, Sofia, Bulgaria	
RWE AG, Essen, Germany	
Vattenfall Europe Generation AG & Co. KG, Cottbus, Germany	
Vattenfall Europe Generation AG & Co. KG, Cottbus, Germany	
Doosan Babcock Energy Ltd., West Sussex, UK	
RWE Power AG, Essen, Germany	
Siemens d.o.o., Ljubljana, Slovenia	
RWE Power AG, Grevenbroich, Germany	
RWE Power AG, Grevenbroich, Germany	
Lausitz Energie Kraftwerk AG, Cottbus, Germany	
Uniper SE, Düsseldorf, Germany	
Hongsa Power Company Limited, Vientiane, Laos	
Limited, Vientiane, Laos	

ic Reduction		
ture and Pressure		
eam Generator		

FGD Flue Gas Desulphurization CFB Circulating Fluidized Bed ESP Electrostatic Precipitator

DRY LIGNITE COMBUSTION SYSTEMS

DRY LIGNITE VORTEX BURNER

HIGH FLEXIBILITY, AVAILABILITY &
EFFICIENCY
RELIABLE USE IN CO-FIRING

APPLICATION

Coal Fired Power Plants and Industrial Boilers

Pollution reduction, extension of fuel range, efficiency increase

Ignition burner and auxiliary burner for medium and peak loads

Benefits

- High flexibility, availability and efficiency
- Reliable use in co-firing
- Reliable solution based on decades of experience
- Savings on expensive start up fuel

TECHNICAL DATA

Burner Type:

10 - 100 MW

Emissions:

FUEL TYPE

Burner Capacity:

CO < 100 mg/m³ (STP)

 $NO_{x} < 190 \text{ mg/m}^{3}$ (STP)

Pulverized Dried Lignite

Water: 10 - 20 % ar

Ash: 4 – 16 % ar

VM daf: 30 – 70 %

LCV: 18 - 22 MJ/kg

Integrated Vortex Burner

- Consultancy
 - Design of burners

SCOPE OF SUPPLY

- Process engineering
- Design of furnace
- CFD-Simulations of boiler furnace and combustion system
- Supply and installation of firing system components including burners, OFA, etc.
- Adaptation of I & C
- Commissioning
- Optimization

REFERENCE LIST EXCERPT

REFERENCE

Engineering for C&I implementation for dry lignite tes MWth, Lignite, RWE Ibbenbüren PS, Germany

Study for integration of TBK (pre-dried Lignite) burne cite slag-tap firing system, 848 MWel, Bituminous Coa Ibbenbüren PS, Germany

Engineering service for support during bidding phase of boilers including a co-firing concept, 2 x 550 MWel, Lignite, Niederaussem PS Unit K, Germany

Concept design study for optimization of firing system dry lignite burners, 2 x 550 MWel, Lignite, Niederauss Germany

Concept study for a 1100 MWel dry lignite-fired steam Japan

Design study for a super critical steam generator fire Dried Lignite without flue gas circulation, Germany

Feasibility study for the implementation of dry lignite including test phase, Germany

LEGEND

PS Power StationPF Pulverized FuelCHP Combined Heat & Power Plant

SCRSelective CatalytSTPStandard TemperaHRSGHeat Recovery Sta

	CLIENT	
est burner, 20	RWE, Essen, Germany	
er in anthra- bal,	RWE Service GmbH, Nordhorn, Germany	
e for design l, Pre-Dried	Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo, Japan	
em considering sem PS Unit K,	RWE Power AG, Essen, Germany	
n generator,	Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo, Japan	
ed with Pre-	RWE Power AG, Essen, Germany	
e burners	RWE Power AG, Essen, Germany	

tic Reduction	FGD	Flue Gas Desulphurization
ature and Pressure	CFB	Circulating Fluidized Bed
team Generator	ESP	Electrostatic Precipitator

RELY ON GOOD EXPERIENCES

YOU CAN COUNT ON US AS EXPERTS IN THE AREAS OF

- COMBUSTION & INCINERATION
- AIR POLLUTION CONTROL
- HEAT TRANSFER & STORAGE
- ENGINEERING & CONSULTING
- AFTER SALES

ALLOW US TO ASSIST YOU IN YOUR EFFORT TO MEET UP-TO-DATE ENVIRONMENTAL DEMANDS WHILE REMAINING ECONOMICALLY EFFICIENT!

STEINMÜLLER ENGINEERING GMBH

IHI GROUP COMPANY Fabrikstraße 5 51643 Gummersbach Germany

www.steinmueller.com info@steinmueller.com

PHOTOS

Steinmüller Engineering GmbH, AVttention, Peiper Fotografie